Introduction

Each spring and summer the largest known bat colony in Washington State, a mixed-species maternity colony of Little brown bats and Yuma bats (diaspiroides eugeniae and m. yumanensis, or "MYLULU") most in an abandoned railroad pier on north Puget Sound (Fig. 1). The bats begin arriving in April, hibernate young in early June. After the young become visible in early July, they leave the maternity colony to search for water, and presumably mate (Goldman, 1988). The bats then decide where to roost, dependent only on location, in July. Based on observation of bats in the hand, it appears that nearly all of the bats roosting in the pier are roosting in the pier are roosting Home bats or Little brown bats (m. lucifugus) or Yuma bats (m. yumanensis) (Greg Falxa, pers. comm.). We also found some bats roosting on the supporting beams of the abandoned railroad pier.

Methods

We monitored the maternity colony population with frequent emergence counts from late March to early October 2003 and 2004. We captured bats near the roosting pier with mist nets on 16 nights between mid-April and late August both years. All bats captured were marked with numbered paint dots with 9 nights 13 days before foraging to the 19-km distance. We also used a Yaesu FT-817 ham radio (Vertex-Standard, Cypress, CA) with an omni-directional gain antenna, a low-noise preamplifier, and a digital audio processor (to reduce ignition noise). The observer then switched to a portable telemetry receiver and a Yaesu FT-817 ham radio (Vertex-Standard, Cypress, CA) with an omni-directional gain antenna, a low-noise preamplifier, and a digital audio processor (to reduce ignition noise). The observer then switched to a portable telemetry receiver and a Yaesu FT-817 ham radio (Vertex-Standard, Cypress, CA) with an omni-directional gain antenna, a low-noise preamplifier, and a digital audio processor (to reduce ignition noise). The observer then switched to a portable telemetry receiver and a Yaesu FT-817 ham radio (Vertex-Standard, Cypress, CA) with an omni-directional gain antenna, a low-noise preamplifier, and a digital audio processor (to reduce ignition noise).

Acknowledgements

Many thanks to Lori Salzer, Lisa Hallock, Michael Baker, Mary Linders, Joanna & JD Miller, John Fleckenstein, John Konovsky, Don Martin, Nancy Laich, Kelly McAllister, Scott Pearson, Michael Aimee Hart, Pat Ormsbee, WA Dept of Natural Resources and to Cascadia Research. Radio tagging was made possible because of support from Bats Northwest, Cascadia Research, and WDF&W Region 6.

Results

Three of the 10 radio-tagged bats foraged for long periods with no night roosting observed, 3 others roosted only when it started raining while they were involved in feeding, emerging shortly after the rain abated to continue foraging. The remaining 4 routinely traveled 1-2 nights nightly,据此文章内容，以下是一个关于Myotis Bat的段落。

Do Large Colonies Create Long Commutes? Examining Myotis Bat Foraging Distance and Duration

Greg Falxa, Cascadia Research Collective, Olympia, WA.

gregf@efn.org

Discussion

These one-way commute distances ranging between 1 km and 22 km could be considerably greater than previously reported. Studies and surveys for two of these species indicate distances of <1 km to 8 km between day roosting areas and foraging areas (Barbour and Davis 1969; Barclay, per. comm.). We also found some bats roosting on the supporting beams of the abandoned railroad pier.

Conclusion

Our results suggest that aspects of the reported foraging behavior for small myotis bats is not applicable to this landscape, and that these small bats have the metabolic capability and endurance to regularly make long commutes to foraging areas. Many foragers long distances interrupted by briefs of no roosting, then commute back to the roost. We are providing evidence that these bats are capable of foraging at distances greater than previously reported for Little brown or Yuma bats.

References


Barclay, RMR 2003. Personal communication


Gaspari, S. 1994. Personal communication

